

Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University, Prague

Milena Bušová

Drinking water <u>5 water functions in human body</u>: 1.Cell life

Water is a carrier, <u>distributing essential nutrients</u> to cells, such as minerals, vitamins and glucose.

2. Chemical and metabolic reactions

Water <u>removes waste products</u> including toxins that the organs' cells reject, and removes them through urines and faeces

3. Transport of nutrients

Water participates in the biochemical break-down of food.

Drinking water

4. Body temperature regulation

Water has a large heat capacity which <u>helps limit changes</u> <u>in body temperature in a warm or a cold environment</u>. Water allows the body to release heat when ambient temperature is higher than body temperature. The body begins to sweat, and the evaporation of water from the skin surface very efficiently cools the body.

5. Elimination of waste

Water is an effective <u>lubricant around joints</u>. It also acts as a ,,shock absorber" for eyes (removes impurities), brain, spinal cord and even for the foetus through amniotic fluid.
Water is at the center of life. This is why nobody can live more than <u>3 to 5 days</u> without any water intake.

C Mayo Foundation for Medical Education and Research. All rights reserved.

http://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/multimedia/functions-of-water-in-the-body/img-20005799

In the body

Intracellular fluid (ICF) - account for 40% of body weight of an adult male, or <u>66% of total body water</u>

- **Extracellular fluid** (ECF) 20% of the total body weight of an adult male (15 liters of water).
 Extracellular fluid is divided into intravasculary fluid
 - blood plasma and interstitial fluid tissue fluid

Organs – in comparison

most water content is in the blood (83%)
in muscle tissue (75%)
in the skin (72%)

less water containing

bones (22%) and **adipose tissue** (10%)

<u>little water content has toth enamel (2%)</u>

Water content in the body

Aurabiowell.com

Average total body water (TBW) as body weight percentage

Age	Males	Both	Females
0 - 1 month		76	
1 - 12 months		65	
1 - 10 y		62	
10 - 16 y	59		57
17 - 39 у	61		50
40 – 59 y	55		47
60 y and older	52		46

The water content of the body changes:

with age - about 75 % in the newborn, usually less than 50 % in the elders,

with the total fat (10 % H_2O) and muscle (75 % H_2O) content,

a lean person has high TBW, an obese person has low TBW

2

http://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/multimedia/functions-of-water-in-the-body/img-20005799

Fluid daily intake

Human adult:

- drinking water, fluids about 1000 1500 ml/day
- from f<u>ood</u> : about <u>1000 ml/day</u> (against composition of food)
- <u>metabolic water</u>: **300 ml/day** (is formed in oxidativ reactions)

Loss of body water Adult daily:

<u>1000 – 1500 ml of urine (diuresis)</u>

50 ml by skin (against physical activity, climatic conditions)

400 ml - by respiration (lung)

100 ml gastrointestinal tract (faeces), in diarrhea more

How much should you drink?

How much should you drink water every day? Water is <u>essential to good health</u>, yet needs vary by individual

How much water do you need?

5-8 cups (1.5 liters) or more a day

Recommendations against Mayo Clinic:

Water is still your best because it's calorie-free, inexpensive and easily available

Beer, wine and caffeinated beverages — such as coffee, tea or soda — can contribute, but these should not be a major portion of your daily total fluid intake.

Water is still best because it's calorie-free, inexpensive and readily available

Next recommendation

To **ward off dehydratation** and make sure your body has the **fluids enough** - good idea:

cz.123rf.com

Drink a glass of water or other calorie-free or lowcalorie beverage <u>with each meal</u> and <u>between each meal</u>

Drink water before, during and after exercise

cz.123rf.com

kaloricketabulky.cz/2014/01/jak-spravne-jist-a-pit-pred-a-po-cviceni/

Is water readily available?

Proportion of population using an improved water source, 1990 and 2010 (Percentage)

0 500 1 000 1 700 2 500 7 500 15 000 50 000

Access to safe - water

WHO: Pacific Institute, report 2004

Note: inhabitants without access to harmless drinking water

WHO

unicefconnect.wordpress.com

<u>Safe-water isn't available in all countries</u>! The <u>average distance</u> to source of safe drinking water in Africa and Asia is six kilometers! Need – daily!!

WHAT'S A TOILET WORTH?

LACK OF ACCESS TO SANITATION COSTS THE WORLD US\$260 BILLION YEARLY

www.faceafrica.com

www.wordbank.org/water

Without water isn't life

In CR – summer – lack water !!! Resources are limited

! Conserve , to <u>save water !!!</u>

magazin.ceskenoviny.cz

In CR - popularity - swiming pools near at home !

eliteliving.cz

Flushing toilets x by drinking water!?! Rain water - reservoirs, ↓ amount: new - max.6 litres !

fyzmatik.pise.cz

Water resources on Earth Water resources aren't inexhaustible!

Many uses of water include: <u>agricultural</u>, <u>industrial</u>, <u>household</u>, <u>recreational and environmental activities</u>.

Only <u>2.5% of water</u> on the Earth is <u>fresh water</u>, and over <u>two</u> <u>thirds of this is frozen in glaciers and polar ice caps</u>.

!! 70% of world-wide water use is for **irrigation** in agriculture.

The Water Cycle

Water in hydrosphere

Ocean 97,7 % Glacier 1,7 % Atmospheric water 0,0009 % Freshwater lakes 0,0093 % Damps 0,0004 % Rivers, streams 0,0001 %

tapety.walpapers.cz

Climate changes will have significant impacts on water resources around the world –

close connections between the **climate and hydrologic cycle**

Google:slideshare.net

Water pollution

What are the sources of water pollution?

- Two general categories: direct and
- indirect contaminant sources
- Main: Agriculture and Industry Urbanic areas

enviregion.pf.ujep.cz

Direct sources include wastewaters from factories, refineries, waste treatment plants, animals etc

karvinsky.denik.cz

zenergo.cz

http://vtm.e15.cz/ekozemedelstvi-vybrat-soulad-s-prirodou-ci-pesticidy

Big consumption of water !

Google: fewresources.org

The consumption of water for irrigation from 1960 to 2005 increased by 60% <u>- more than 2-times</u>! Why??

Reasons: growing population – growing consumption of food and feed (animals)...

Urban areas

Large agglomerations and cities (but not only big) produce a large amounts of waste water

<u>**Contaminants from industry, traffic**</u> heavy metals, organic compounds ,

<u>Contaminants from household</u> – detergents, phosphates, drugs – antiflogistics, antihypertensives, antidepresives, estrogenic hormones - contraceptives, aj. \rightarrow they can cause <u>change of sex</u> the water organisms - fish – bad effect on reproduction, deformations of fish body, low weight, growth...

Endocrine disruptors – hormonally active substances

Question: Do you know – what 's the consumption of safe-water for 1 person/day? In CR ...

Endocrine disruptors

hormonally active substances

- > affect the hormonal system at all levels
- similar structure to hormones
- > may occupy receptors
- > may modify receptors
- impaired hormon pathways
- conected with metabolic diseases, DM, impaired reproduction, reduction number of sperm
- changed sex of fish, other water organisms(crayfish) the impossibility of reproduction, growth retardation

Water pollution2

What are the effects of water pollution? The main effects of water pollution:

Cannot be use as drinking water for human consumption (toxic compounds, xenobiotics), for animals (due to these organisms having bioaccumulated toxins from the environment

unbalanced water ecosystems

effects are specific to the various contaminants

Water pollution3

What are the ways we can take to decrease those problems?

- 1. to <u>minimizing the present levels</u> of pollutants, contaminants
- 2. **remediating** (cleaning up)

Approximately90% of wastewater in developingcountriesisdischargedwithoutpurificationstraight into rivers and other waterways !!!

!!! Wastewater treatment plant !!!

In our everyday lives – all activities

to minimize pollution and save water !!!

Why is wastewater treatment so important?

! Sources of diseases associated with pollution by various agens:

Do you know who they are ???

WHO: In 2011 reported <u>600,000 cases of cholera</u>!

Human impact on water –

disease causing agents - pathogens

Common diseases transmitted to humans through contaminated drinking water

Bacteria	Disease	Effects
Bacteria	Typhoid fever	Diarrhoea, severe vomiting, swelling of the spleen, inflammation of the intestine; often fatal if untreated
	Cholera	Diarrhoea, severe vomiting, dehydration; often fatal if untreated
	Bacterial dysentery	Diarrhoea; rarely fatal except in infants without proper treatment
	Enteritis	Severe stomach pain, nausea, vomiting; rarely fatal
Viruses	Infectious hepatitis	Fever, severe headache, loss of appetite, abdominal pain, jaundice, inflammation of the liver, rarely fatal but may cause permanent liver damage
Parasitic protozoa	Amoebic dysentery	Severe diarrhoea, headache, abdominal pain, chills, fever; if not treated can cause liver abscess, bowel perforation and death
	Giardiasis	Diarrhoea, abdominal cramps, flatulence, belching, fatigue
Parasitic worms	Schistosomiasis	Abdominal pain, skin rash, anaemia, chronic fatigue, and chronic general ill health

www.greenpaskonline.org/english/environmental-components.php?id=02-03-02-00

Typhoid Fever Epidemiology

Salmonella typhi - has been a major human pathogen for thousands of years, cause: bad sanitation, waste

In history: Great Plague of Athens at the end of the Pelopennesian War

Presently <u>occurs worldwide</u> and is **endemic in Asia, Africa, Latin America, the Caribbean, and Oceania (80% of cases come from Bangladesh, China, India, Indonesia, Laos, Nepal, Pakistan, or Vietnam**) – wastewater contaminating rivers \rightarrow contaminatig sources of drinking water (poor sanitation)

Danger: <u>school-aged children and young adults</u>

High incidence among <u>very young children and infants</u> ! WHO: kills about 4.000 children/day worldwide

Typhoid fever

Enteric fever, potentially fatal multisystemic illness Caused by Salmonella typhi The classic presentation includes fever, malaise, diffuse abdominal pain, and constipation **DDx**: abdominal pain

Typhoid – treatment:

<u>Fluoroquinolone</u> for both complicated and uncomplicated cases of typhoid fever (must **test sensitivity**)

<u>Multidrug-resistant *S typhi* is</u>, by definition, **resistant** to the original first-line agents, ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole

How can we protect before? Vaccination

Education

Waterborn disease 1

Example: Israel – before and after new regulations(1989)

Table 4. Average number of communities with contaminated water in >25% of samples by district, Israel 1985–97^a

District	Years						
	1985–87	1988 ^b	1989 ^c	1990–91	1992–93	1994–95	1996–97
Jerusalem	2	0	10	4.5	0	0.5	0
North	47	29	125	77	24.5	13	8
Haifa	7	7	15	7	0	0.5	0
Central	10	6	31	17	5.5	3	1
Tel Aviv	0	0	0	0	0	0	0
Ashkelon	2	4	16	5.5	5	3	1
South	1	0	5	1.5	0	0	0
Total	70	46	202	112.5	35	20	10

^a Source: Department of Environmental Health, Ministry of Health, 1999.

^b Includes all of 1988 and the first 3 months of 1989 when the standards changed.

^c Includes the 9 months from 1 April to 31 December — that is, the first period governed by the new regulations.

- * <u>Reported by WHO</u>: Bull World Health Organ vol.78 n.12 Genebra Jan. 2000
- http://dx.doi.org/10.1590/S0042-96862000001200015

Waterborn disease 2

Table 3. Reported cases of waterborne enteric disease, total number of cases of enteric disease, and proportion of total disease identified as waterborne in community and non-community water sources, Israel 1976–97^a

Disease			Year		
	1976-80	1981-85	1986–90	1991–95	1996-97
Shigellosis Waterborne Total (%)	6557 32 839 (20)	10 180 44 152 (23.1)	1524 29 070 (5.2)	260 ^b 25 874 (1.0)	0 7274 (0)
Salmonellosis Waterborne Total (%)	979 10 101 (9.7)	157 12 386 (1.3)	244 17 127 (1.4)	260 ^b 28 986 (0.9)	0 11 481 (0)
Typhoid Waterborne Total (%)	112 596 (18.8)	76 629 (12.1)	0 216 (0)	0 0	0 0
Total all causes Waterborne Total (%)	7648 43 536 (17.6)	10 413 57 167 (18.2)	1768 46 413 (3.8)	520 54 984 (0.9)	0 18 788 (0)

^a Source: Epidemiology Department, Ministry of Health, 1999.

^b See footnote b Table 2.

- * <u>Reported by WHO</u>: before and after new regulations (1989)
- * Bull World Health Organ vol.78 n.12 Genebra Jan. 2000
- http://dx.doi.org/10.1590/S0042-96862000001200015

Wastewater treatment -1

Technology of wastewater treatment

- 1. Flocculation
- 2. Sedimenattion
- 3. Filtration
- 4. Sanitation (desinfection)

1) Flocculation

Chemical reactions - a positive effect on water pollution – forming flakes with dissolved particles in the water,the particles bind with the chemicals and form larger particles called flocs (alum – aluminium sulfate used)

Wastewater treatment-2

2) Sedimentation

Flocs sedimentates to the bottom of sedimentation tank

3) **Filtration**

Filtration through **filters – 3 layers**, compositions: sand, gravel, <u>charcoal</u> - remove dissolved particles, such as dust, parasites, bacteria, viruses and other chemicals, esspec. organic substanties, but <u>hormanlly active</u> <u>compounds</u> (endocrine disruptors) – big problem !

Wastewater treatment-3

4) **Disinfection**

After the water has been filtered, a disinfectant (chlorine, chloramine) may be added in order <u>to kill</u> any remaining parasites, bacteria, and viruses, and to <u>protect the water</u> <u>from bacteria</u> when it is distributed to households, offices, schools ... for common use

Wastewater treatment-4

Technology of wastewater treatment

How a Water Treatment Plant Works

Google: http://beckart.co.uk/wastewater_treatment/continuous_sedimentation.php

Wastewater treatment Principle w-w. treatment from city

Google: saferenvironment.wordpress.com

Principles for water purification

youtube:

Short video - 3 minutes

https://www.youtube.com/watch?v=aMcamQJxFHs

Important video-lecture: 1:26 hour

https://www.youtube.com/watch?v=JL3y1CWhirQ

Principle of flocculation: 5 minutes

https://www.youtube.com/watch?v=5uuQ77vAV_U

What is drinking water?

- water to be consumed for a long period and will not cause harm !

WHO: Safe drinking-water is defined:

 does not represent <u>any significant risk to health</u> over a lifetime of consumption, including different sensitivities that may occur between life stages.
 Drinking water is suitable for <u>all usual domestic</u> purposes, including personal hygiene.

Water Quality and Health

WHO Water Quality and Health Strategy 2013-2020
1.protect existing sources of drinking water and the possibility of finding and building additional sources
Strategies for developed and developing countries:

2. <u>fighting with infectious diseases</u> transmitted by water

In 2011 reported <u>600,000 cases of cholera</u>!
Every year <u>bad quality of water cause death 1,8 milion</u>
of children under 15 y. = (4.000/day)!!!

88% of all diarrheal diseases are caused by contaminated water and bad or lack sanitation

The **quality of drinking-water** is a powerful environmental <u>determinant of health</u>

Safety drinking-water is a prevention against of waterborne diseases

<u>Sanitation</u>: the provision of clean drinking water and adequate wastewater disposal(treatment plant)

- Sources of water? What sources for drinking water we can use? Ground water Surface water Sea water? High salinity !
- **CR:** <u>Švihov dam</u> (or Želivka dam) lies on the Želivka river), 90 km from Prague
- reservoir of drinking water
- surface water reservoir
- supply capitol Prague
- from 1972 y.
- suplementation : 76% of consumption

Performance: 6,93 m³/s of water

www.wikipedia

Definition:

Surface water collects on the ground, <u>in streams</u>, <u>rivers, lakes, damps and in oceans</u>

Differs from groundwater (composition)

<u>Surface water is naturally recycled</u> by rain, but naturally <u>lost through evaporation</u> and underground <u>infiltration</u>

Principle of surface w.-treatment for drinking

Google: kullabs.com

Threshold Limit Value <u>What is it?</u> The level that can be exposed day after day for a lifetime without adverse health effects <u>Main attention is focused on</u>:

Concentration of <u>active Cl -</u>

Concentratin of nitrates and nitrites

Presence of <u>bacteria</u> (pathogenic microflora-Enterobacteriacea)!

Presence of <u>polychlorinated hydrocarbons</u> (PCB) - a synthetic organic chemical compound

Presence of <u>alfa activity</u>

Composition - limits

nitrates 50 mg/l – NMH nitrites 0,5 mg/l – NMH Fluoride ions 1,5 mg/l – NMH ammonia ions 0,5 mg/l – MH chlorides 100 mg/l – MH, při chloridech v podloží 250 mg/l iron 0,2mg/l – MH , při železe v podloží 0,5 mg/l Free chlorine in chlorinated water 0,3 mg/l - MH

Microbiological and biol.parameters of drinking water In Czech Republic : Degree 252/2004

parameter	unit	limit	
22°C psychrophilic microorganisms	*KTJ/ml	500	- **we]
C	KTJ/ml	200	- ***f(
36°C	KTJ/ml	100	- well fo
mesophine microorganisms	KTJ/ml	20	for pu
Pseudomonas aeruginosa	KTJ/250 ml	0	

- **well for individual supply
- ***for public supply
- well for individual supply
 - for public supply

Next parameters next slide ...

Notes: *KTJ – colony forms units of bacteria ** individual supply – for less than 100 person ***public supply – more than 100 person

Microbiological and biol.parameters

indicator	number of colon	ia/limit
1. Clostridium perfringens	KTJ/100 ml	0 public
2. Enterococcus	KTJ 10 ml KTJ/100 ml KTJ 10 ml	0 individ0 public0 individ
3. Escherichia coli	KTJ/100 ml KTJ 10 ml	publicindivid
4. coliforms bacteria	KTJ/100 ml	0 public

Note: **KTJ*** – colony forms units of bacteria (CFU)

Composition of drinking water

Ca++	40 - 70 (min 30) mg/l
Mg ⁺	+ 20 - 30 (min 10) mg/l
Na^+	5 - 25 mg/l
K +	1 - 5 mg/l
Cl-	less than 50 mg/l
SO ₄ -	less than 50 mg/l
HCC	D ₃ ⁻ hydrocarbons 100 až 300 mg/l
F	fluorides 0,1 - 0,3 mg/l
NO ₃	less than 10 mg/l
5	

RL - dissolved compounds, mineralization) 150 až 400 mg/l

Parameters of drinking water for infants x adults

For newborns (especially under 4-5 weeks) water supplements can be risky

Babies under two months should not be given supplemental water.

Parameters are stricters for infants

- Infants: NO₃⁻ less than 10 mg/l
 - NO₂⁻ less than 0,02 mg/l ... methemoglobinemia !!!

 $Na \leq 20 \text{ mg/l}$

Parameters	Infants	Adults			
Parametry kojenecké a kohoutkové vody (mg/litr) a KTJ/ml					
Sledovaný parametr	KOJENECKÁ VODA	PITNÁ VODA			
Organotrofní bakterie 22 °C	max. 100	max. 100			
Organotrofní bakterie 36 °C	max. 20	max. 20			
Vápník	dop. 40 – 80	dop. 40-80			
Sodík	max. 20	max. 200			
Dusičnany	max. 10	max. 50			
Dusitany	max. 0,02	max. 0,50			
Benzo(a)pyren	méně než zjistitelné	max. 10			
Železo (nanogramy/litr)	max. 300	max. 200			
(KTJ – kolonie tvořící jednotky), dop. –	doporučené množství, max. – mo	aximální množství			

Main parameters – example what is monitored

Left column -parameters

Compliance levels in water supply zones exceeding				
1000 m per uay as an avera	2005	2006	2007	
Microbiological parameters				
E.coli	99.5	99.7	99.8	
Enterococci	97.4	99.7	99.7	
Chemical parameters		0.000		
Arsenic	100	100	92.9	
BaP	99.3	100	100	
Bromate	96.4	100	100	
Copper	100	100	99.7	
Lead	100	100	99.3	
Nickel	100	100	98.5	
Nitrate	99.5	99.4	99.3	
Nitrite	100	99.8	100	
Total pesticides	100	100	99.3	
Indicator parameters				
Aluminium	100	99.4	100	
Ammonium	100	99.8	99.9	
Chloride	99.9	100	99.8	
Cl.perfringens	98.5	100	100	
Colour	99.7	99.7	99.8	
Conductivity	100	100	99.9	
pH	99.9	99.7	99.5	
Iron	99.4	98.5	98.0	
Manganese	98.9	98.5	97.9	
Odour	100	100	99.9	
Oxidisability	99.9	100	99.8	
Sodium	99.9	99.9	99.9	
Sulphate	100	99.6	99.8	
Coliform bacteria	97.5	100	100	
TID and tritium	100	100	100	
	1 6 11 11		C (14/7+).	

All other DWD parameters had full compliance in the three reporting years.

WATER: historical public health

- Water is one of the <u>basic physiologic and hygienic human</u> <u>needs</u>
- Daily <u>access to drinking water</u> was a precursor to human development
- Contaminated water has been <u>identified with disease</u> <u>spread</u> throughout history and was not properly described until the 19th century (germ theory)

Proteobacteria Vibrio cholerae

Robert Heinrich Herman Koch 1843 – 1910

erae wikipedia

German physician, microbiologist, identifying the specific causative agents of tuberculosis, cholera and anthrax (infection diseasis).

Important links

1. Water, 2 - 3 minutes
http://www.youtube.com/watch?v=_R_vpNQofJc

2. flocculation , 5 - 6 minutes

https://www.youtube.com/watch?v=5uuQ77vAV_U

(5 minutes, flocculation)

3. Lecture: youtube WATER : 1,5 hour in English Water and wastrewater treatmen https://www.youtube.com/watch?v=JL3y1CWhirQ

Important links:

www pages of Department of Hygiene and Epidemiology 1.Faculty of Medicine, Charles University, Prague

Link: <u>http://hyg.lf1.cuni.cz/</u>

- Question for Test/ State Exam
- Materials for downloading
- Materials for Hygiene: Water J.Quinn, V.Bencko
- In Czech: Pitná voda A. Slámová

RNDr.Milena Bušová, CSc. milena.busova@lf1.cuni.cz