\& JCl

Epidemiological methods

At the end of the session students should be able to:

- Differentiate between different types of data
- Describe the structure of an epidemiological dataset
- Define and calculate measures of disease occurrence and measures of association

Dr Jitka Pikhartova
Department of Epidemiology and Public Health
University College London

- Describe the basic features of the main types of epidemiological studies
- Explain the main features of bias, confounding, chance
- Be familiar with causation criteria
Introduction A(1)CI
- Until 1950s, the term "epidemiology" was mainly used for studies of communicable diseases
- Later, it was suggested that a new field of study should be created to look at non-epidemic diseases
- The meaning of "epidemiology" was broadened to cover also non-communicable diseases

Much of epidemiological research is taken up trying...

- to establish associations between exposures and disease rates
- to measure the extent to which risk changes as the level of exposure changes
- to establish whether the associations observed may be truly causal (rather than being just consequence of bias or chance)

Definition of epidemiology
 - A modern definition of epidemiology is thus very general:
 - Epidemiology is the study of the distribution and determinants of disease in population

| Variables (outcomes/risk factors) |
| :--- | :--- |
| - Binary |
| - Deaths (y/n) |
| - Sex (m/f) |
| - Categorical (ordinal or nominal) |
| - Frequency of drinking (never, 1-3 times a month, 1-3 |
| times a week, 4 times a week or more often) |
| - Severity of pain (none, some, a lot) |
| - Marital status (single, married/in partnership, divorced, |
| separated, widowed) |
| - Country of birth (Czech R, Slovakia, Poland,Austria, |
| Germany, Ukraine, Hungary) |
| - Continuous |
| - BMI, blood pressure, etc. |

- The study of the distribution and determinants of the frequency of health-related outcomes in specified populations
- Quantitative discipline
- Measurement of disease / condition / risk factor frequency is central to epidemiology
- Country of birth (Czech R, Slovakia, Poland,Austria,

Continuous

- BMI, blood pressure, etc.

What type of variable is...

- Self-rated health =Categorical (ordinal)
- Total cholesterol concentration = Continuous
- Economic activity = Categorical (nominal)
- Risk of CVD death in the next 10 years (score) = Continuous
- Having lung cancer or not = Categorical (binomial)
- Quartile of income = Categorical (ordinal)
- Sex
- Social class
= Categorical (binomial)
= Categorical (ordinal)

Binary outcomes:

"cases" vs. "non-cases"

- Persons with disease = "cases"
- Definition of case is crucial
- E.g.
- Obesity: BMI 230
- Hypertension: SBP $\geq 140 \mathrm{~mm} \mathrm{Hg}$ or DBP $\geq 90 \mathrm{~mm} \mathrm{Hg}$ or treatment
- High cholesterol: $\geq 6.2 \mathrm{mmol} / \mathrm{L}$
- Can be complex in clinical settings
(e.g. metabolic syndrome, depression, etc.)
- But must always be clearly specified

ث10.

Measures of disease frequency

- Used for binary outcomes
- Require a numerator and denominator
$=$ number of persons with disease number of persons examined
- expressed as X per 1,000 persons (or per 100,000 etc.)

ث101

Numerators and denominators

Example:

- The number of cancer cases in the UK is 247,667 whereas in Belgium it is 47,948
- The UK has a bigger problem in numerical terms
- But do Belgians have lower risk of getting cancer?
- Numerators alone are meaningless
- We need both numerators AND denominators

Numerators and denominators
- The number of cancer cases in the UK is 247,667
whereas in Belgium it is 47,948
- UK: $247667 / 65000000=0.00381=381$ per
100 000
- Belgium: $47948 / 11000000=0.00436=436$ per
100000

.

b) Incidence
$=$ number of new cases in a given time period total population at risk

А 10

Exercise

- In 2014, 55,222 new cases of breast cancer were diagnosed in the UK.
- Approximately 65M people in the UK
- Most cases in women (only 389 cases in men)
- Population at risk?
- Cumulative incidence of breast cancer in the UK in 2014 in females was ?
???
???

ث10.

- In 2014, 55,222 new cases of breast cancer were diagnosed in the UK.
- Approximately 65M people in the UK
- Most cases in women (only 389 cases in men)
- Population at risk?
- Cumulative incidenee of breast cancer in the UK in 2014 in females was ?

A Cl_{1}				
Example				
3-year study with a sample size of 100, outcome of interest was fatal heart disease.				
	year 1	year 2	Study ends	- 10 participants were followed for 1 year
Developed outcome	6	5	4	- 15 participants were followed for 2 years
Dropped out	4	10	-	- 75 participants were
Sample at risk	90	75	-	followed for 3 years
Total person-years:				
Incidence Rate: 2				

| Relationship between prevalence and
 incidence |
| :--- | :--- |
| - The prevalence of a health-related outcome |
| depends both on the incidence rate and the time |
| between onset and recovery or death |
| - Prevalence = Incidence x Average disease |
| duration |

The prevalence of a health-related outcome depends both on the incidence rate and the time between onset and recovery or death

Prevalence $=$ Incidence \times Average disease duration

| Exercise |
| :--- | :--- |
| - Population of 10,000 people |
| - 10 new cases of cancer a year |
| - 20 registered cases at any time |
| - Average duration of (survival from) the cancer is... |
| |
| |

| Exercise |
| :--- | :--- |
| - Population of 10,000 people |
| - 10 new cases of cancer a year |
| - 20 registered cases at any time |
| - Average duration of (survival from) the cancer is... |
| 20/10 (prevalence/incidence) $=2$ years |
| |
| |

\#1914	
Example	
- A city has a population of 900,000 ; $-30,000$ deaths occur in a 3 -year period	
$\begin{aligned} & \text { - Mortality rate for the period }=\underline{30000} \\ & =0.0033 \text { or } 33 \text { deaths per } 1,000 \\ & =11 \text { deaths per } 1,000 \text { per year } \end{aligned}$	
	${ }^{26}$

	Exercise
Which piece of information were necessary to	
calculate following result:	
$\mathbf{1 . 5}$ deaths $/ 10,000$ population per day	
1. All deaths occurred in hospital	
2. The population is 29,661	
3. 53% of deaths were males	
4. The deaths occurred over 3 months	
5. 404 deaths happened	
6. Tuberculosis caused 17% of the deaths	

tICI

cases/ population per number of days
....recalculated to 10,000

- The number of deaths $=5$.
- The population size $=2$.
- The time period in which the deaths occurred $=4$.

tICI

- Standardized mortality rate refers to a mortality rate which is age-standardized in order to permit comparisons between different countries, regions etc.
=also age-specific mortality rate
- Infant mortality rate
- Maternal mortality rate
- Under-5 mortality rate

-

Other commonly used measures

- Perinatal mortality rate is the number of neonatal and fetal deaths (stillbirths) per 1000 births
- Case fatality rate is the rate of death among people who already have a condition, usually in a defined period of time. usually measured as a decimal or as a percent.
- Survival rate is the proportion of people who remain alive for a given period of time after diagnosis of disease. E.g. breast cancer has 5 -year survival rate around 70%.

*1914	
Recently often measured and mentioned...	Most recent excessive deaths
- Number of excess deaths	
Hypothetical number of deaths caused by the emergency itself Or	- Covid
Number of deaths that would not have occurred had the emergency not happened =Difference between pre-emergency mortality rate and mortality rate found during emergency \mathbf{x} population size	
${ }_{37}$	${ }_{38}$

Measures of association

- Risk of disease, rate of disease in different groups of population
- Comparison of risks/rates

± 10

(Absolute) Risk

- Risk is the probability of new occurrence of disease among individuals in an initially disease-free population during a defined time period
- To calculate a risk (r), we divide the number of new cases (d) in the defined period by the population at risk at the beginning of the period (N);
(d and N are referred to as the numerator and denominator, respectively)

$$
r=d / N \text { over a defined period }
$$

- Risk is probability but is often multiplied by a suitable number (eg 100,000)

Example

- In 1980, an annual risk of death was
- Risk in exposed (r_{1})

14 per 1,000 in Kenya,
10 per 1,000 in France
26 per 1,000 in Malawi
(United Nations, Demographic Yearbook)

АUC1					
Risk difference					
- the absolute difference between two risks (or rates)					
$\mathrm{RD}=\mathrm{r}_{1}-\mathrm{r}_{0}$		[a/ (a+b)]-[c/ (c+d)]			
		DISEASE status		Total	
		yes	no		
EXPOSURE status	yes	a	b	a+b	
	no	c	d	c+d	
Total		a+c	b+d	$a+b+c+d$	

AUCI - We can also have different strata of exposure - We may calculate ratio measures for each strata $=$ we compare measure of frequency in each level with measure of frequency in the baseline (unexposed) level Example Death rates from CHD in smokers and non-smokers by age

Age	Smokers rate	Non- smokers rate	Rate ratio
$35-44$	0.61	0.11	5.5
$45-54$	2.40	1.12	2.1
$55-64$	7.20	4.90	1.5
$65-74$	14.69	10.83	1.4
$75-84$	19.18	21.20	0.9
$85+$	35.93	32.66	1.1
ALL AGES	4.29	3.30	1.3

What can you say about this table?

Smokers rate			
Age	Non-smokers rate	Rate ratio	
$35-44$	0.61	0.11	5.5
$45-54$	2.40	1.12	2.1
$55-64$	7.20	4.90	1.5
$65-74$	14.69	10.83	1.4
$75-84$	19.18	21.20	0.9
$85+$	35.93	32.66	1.1
ALLAGES	4.29	3.30	1.3

The rate ratio decreases with increasing age.
It may suggest that the effect of smoking on the rate of CHD is higher in younger ages.

Odds of disease

- We can calculate risks, risk ratio, risk difference however the analysis is often based on ODDS RATIOS

¢191010	
Odds of disease/survival	
- related measure of disease occurrence	- In many situations, it may be easier to calculate
- for a defined population and time period	odds ratio (OR) which is defined as
Cases	
Odds = -----------------------	odds of disease among exposed $=\frac{\mathrm{a} / \mathrm{b}}{}$ (odds ${ }_{1}$)
Non cases =by the time of observation	odds of disease among unexposed c/d (odds ${ }_{0}$)
	OR= odds ${ }_{1} /$ odds $_{0}$
${ }_{5}$	${ }^{\infty}$

			A C.
If disease common:			
Disease	Exposed	Unexposed	Total
Yes	50	25	75
No	50	75	125
Total	100	100	200
$\frac{a /(a+b)}{c /(c+d)}$	50/100=0.5	$\mathbf{R}_{0}=25 / 100=0.25$	$\mathrm{RR}=2.0$
$\frac{a / b}{c / d}$	-50/50=1.0	Od ${ }_{0}=25 / 75=0.33$	$\mathrm{OR}=3.0$
			64

Population attributable risk fraction
(PAF)
- It is a measure of the proportion of all cases in the
study population (exposed and unexposed) that
may be attributed to the exposure, on the
assumption of a causal associaition
- Also called the aetiologic fraction
the percentage population
attributable risk
the attributable fraction

- If r is rate in the total population
PAR $=r-r_{0}$
PAF $=$ PAR/r
(PAF $\left.=\left(r-r_{0}\right) / r\right)$

Example
- 50 persons attended a garden party
- 25 of them developed diarrhoea in the next 3 days
- What was the risk of diarrhoea among the
participants of the party?

+JCI

	Example II.
- 30 party visitors had a BBQ (minced meat)	
- 24 of them developed diarrhoea	
- 20 people did not eat BBQ	
- 1 of them developed diarrhoea	
- How would you calculate RR related to eating	
BBQ?	

30 party visitors had a BBQ (minced meat) 24 of them developed diarrhoea	
people did not eat BBQ 1 of them developed diarrhoea	
- Risk among unexposed R_{0} : - $1 / 20$	
- Risk among exposed R_{1} : - 24/30	
- Relative risk $R R=R_{1} / R_{0}=(24 / 30) /(1 / 20)=16$	

Introduction to
epidemiological
study design

ث10101

What is the purpose of Epidemiology?
"the study of the distribution and determinants of healthrelated states or events in specified populations, and the application of this study to the prevention and control of health problems"

> = Last's Dictionary of Epidemiology

It enables us to:

- Describe patterns of disease in populations
- Study the determinants or risk factors of disease
- Compare disease between groups
- Assess the effectiveness of interventions

Study

"An epidemiological study is a statistical study on human populations, which attempts to link human health effects to a specified cause" (wikipedia.org).

- Epidemiology studies populations, not individuals
- Statistical study: requires large number of people
- Effects: often means associations but here it means consequences
(i.e. disease, health condition)
- Cause: often means risk factor, because cause implies causal association which is very difficult to demonstrate in epidemiology

Study
"An epidemiological study is a statistical study on
human populations, which attempts to link human
health effects to a specified cause" (wikipedia.org).
- Epidemiology studies populations, not individuals
- Statistical study: requires large number of people
- Effects: often means associations but here it means
consequences
(i.e. disease, health condition)
- Cause: often means risk factor, because cause implies causal
association which is very difficult to demonstrate in epidemiology

IUC

Basic tool in epidemiology is the study

- foundations of a good research proposal is the study design
- defines how data or evidence is collected and can be used to compare disease between groups

	\wedge C.
Exercise John Snow and cholera - Introduction John Snow (1813-1858) was a physician in London who was distinguished for, among other things, administering chloroform to Queen Victoria at the birth of two of her children. He is best known for his studies of cholera, in particular of two outbreaks which occurred in London in 1848-49 and 1853-54.	Background: the 1848/49 cholera epidemic in London Cholera periodically swept across Europe during the nineteenth century After a severe epidemic in 1832, the disease next appeared in London in 1848. The severity of this epidemic (approximately $\mathbf{1 5 , 0 0 0}$ recorded deaths from cholera) led to considerable discussion in the medical press. Mortality was particularly severe in the low-lying areas along the banks of the Thames River; hypotheses about what caused cholera included living in lower regions and the existence (contested at the time!) of microbes.

| Classic exercise about a classic incident: |
| :--- | :--- |
| London in 1850: |

Q2. Deaths per houses data

- He inferred that these data supported his hypothesis that cholera was transmitted.
Risk $\mathrm{S}+\mathrm{V}=1,263 / 40,046=31.54$ per 1000 houses
$\mathrm{L}=98 / 26,107=3.75$ per 1000 houses
Other $=1,422 / 256,423=5.55$ per 1000 houses
- But we should also consider:
a) perhaps $\mathrm{S}+\mathrm{V}$ houses were bigger, divided into flats?
b) perhaps $\mathrm{S}+\mathrm{V}$ houses in poorer, lower, denser area? Note that $\mathrm{S}+\mathrm{V}$ area is lower lying,
along the river.
Better data because he obtained denominators. Thus, he could look at deaths in relation to
the number of houses receiving water from each company. Although he did not know the
number of people actually living (and drinking) in each house, it was the best
approximation he could get of the number of people "at risk".

Q4. Pump closed on the 8th - epidemic was almost over by then.
So, it was not the removal of the pump handle that caused the epidemic to stop (although
this had great publicity value).
BUT Epidemic may have stopped as a result of:
- exhaustion of susceptible (local people had already become ill or had fled)
- dilution of contamination

Epidemiology $=$ comparison	

| AUCI |
| :--- | :--- |
| - 550 cases of stomach cancer in Hertfordshire in |
| 2005 |

- 550 cases of stomach cancer in Hertfordshire in
2005
- Population 550,000
$=>$ Rate

- 550 cases of stomach cancer in Hertfordshire in
2005
- Population 550,000
$=>$ Rate $100 / 100,000$

What else would be our interest?	

We compare	

Epidemiology = comparison	
- Type of comparison (= type of study) depends on	
purpose.	
- E.g.	
- Describe the disease / condition	
- Study (analyse) its determinants / causes	
- Study (analyse) prevention / treatment	

Two primary criteria	
- Descriptive vs. analytical	
- Observational vs. interventional	

ثUC1

Descriptive vs. analytical studies

- describe a pattern of occurrence of a disease: descriptive studies (always observational)
- to analyse the relationship between a disease and an exposure of interest: analytical studies (can be both observational and interventional)
$\left.\begin{array}{|ll|}\hline & \text { Four basic questions : } \\ \text { WHAT? Who? Where? When? } & \\ \left.\begin{array}{l}\text { Person (Who?) } \\ \text { age, sex, marital status, social class etc. } \\ \text { Place (Where?) } \\ \text { Geography within countries (cancer atlases etc.) } \\ \text { or internationally } \\ \text { (Japanese more stomach ca than in USA) } \\ \text { ! Special case - migrant studies } \\ \text { Time (When?) } \\ \text { Changes over time: } \\ \text { - sudden onset of diseases (thalidomide, toxic shock sy) } \\ \text { - seasonal pattern (births, deaths, infections, etc.) } \\ \text { - secular trends }\end{array}\right] & \\ \begin{array}{l}\text { All in } \\ \text { relation } \\ \text { to the }\end{array} \\ \text { "What" }\end{array}\right]$

IIC
 Analytical studies

- Analysed relationship between exposure and disease
- Often used in aetiological research
- Include
- ecological studies
- cross-sectional studies
- cohort studies
- case-control studies
- interventional studies (RCT, prevention trials etc)

Observational Studies	
- Sampling	
- Determined by outcome and/or exposure	
- Examples of exposure: smoke, physically active, SES	
- Examples of outcome: disease or state of ill health	
- Timing	
- Single point in time	
- Retrospective (CAVE how questions worded)	
- Prospective (from now \rightarrow future)	

Observational vs. interventional studies
- Observational studies -observe the populations or
individuals under study
• descriptive studies
• ecological studies
- cossosectional studies
- case-control studies
- Interventional studies -where the investigators
intervene, e.g. they assign exposure or a health
measure to a particular individuals or groups
• prevention studies
• randomised clinical trials
e community interventions

\#10.	
Ecological studies	
- Grouped data - Geographical or timeseries - Cheap \& quick - Useful to generate hypotheses - Ecological fallacy = it is wrong to extrapolate from groups to individuals	

Ecological fallacy

- This is a logical fallacy in the interpretation of statistical data where inferences about the nature of individuals are deduced from inference for the group to which those individuals belong
- Extrapolation from groups to individuals is conceptually inappropriate
- Situation when individual-level and group-level (ecological) associations differ
- Individual data are necessary to estimate the association at the level of the individual

Types of comparisons in different types of studies	
Study design	Type of comparison
Ecological studies	Comparing disease frequency between populations
Cross-sectional studies	Comparing disease frequency between persons with and without characteristic of interest IN ONE TIME
Cohort studies	Comparing disease incidence between exposed and unexposed persons IN MORE TIME POINTS
Case-control studies	Comparing frequency of (PAST) exposure between cases and healthy controls
Interventional studies	Comparing incidence of events in persons exposed to the intervention of interest and in control group 124

Applications of different observational and analytical study designs				
	Ecological	Cross sectional	Case control	Cohort
Investigation of rare disease	++++	-	++++	-
Investigation of rare exposures	++	-	-	+++++
Examining multiple outcomes	+	++	-	+++++
Studying multiple exposures	++	++	+++	+++
Measurement of time relationships between expo and outcome	+	-	+	+++++
Direct measurement of incidence	-	-	+1	+++++
Investigation of long latent period	-	-	+++	+++2
1 incidence only if the sampling fraction known for both cases and controls 2 if historical cohort		125		

What types of studies do you know	

Exercise	
Study design overview	
10 mins	
Exposure= independent variable (e.g., smoking)	
Outcome= dependent (e.g., lung cancer)	

Rates	
- What can you name and define?	

What types of studies do you know	

What does it means when we say	
'retrospective' and 'prospective'?	
- What study uses which approach?	

	Exercise
Study design overview	
10 mins	
Exposure= independent variable (e.g., smoking)	
Outcome= dependent (e.g., lung cancer)	

AJC

a) $\mathbf{1 0 0}$ cases of stomach cancer reported to local cancer register were compared to $\mathbf{2 0 0}$ healthy subjects randomly selected from population register. 60 patients with cancer and 60 healthy subjects reported frequent consumption of spicy foods.
-What type of study is this?
Case-control study. The clue is that there were 100 cases of stomach cancer and 200 healthy people.
-What was the outcome measure of disease in this study?
Stomach cancer as defined by the local cancer register
-What was the measure of exposure in this study?
Reported consumption of spicy foods, probably in a questionnaire. It should be noted that this is a subjective measure because it is selfreported.
-What measure of the association between exposure and disease can be calculated in this study? Odds ratio

	$\begin{aligned} & \text { Disease } \\ & \text { Yes (cases) } \end{aligned}$	Disease No (controls)
Exposure Yes	$60(a)$ 40 (c)	${ }_{1}^{60}$ (b)
Exposure No	40 (c)	140 (d)

OR = odds of being case among exposed / odds of being case among controls $=(60 / 60) /(40 / 140)=3.5$
$O R=(a / b) /(c / d)=(a / b) \times(d / c)=(a \times d) /(b \times c)=(60 \times 140) /(40 \times 60)=$
3.5

Interpretation: there are 3.5 times the odds of stomach cancer among those frequently eating spicy food compared to those that do not eat spicy food
b) $\mathbf{1 6 0}$ men HIV positive were divided into two groups (80 patients in each). One group were given a new drug, the second were given a drug in common use. After 1 year of this treatment, 20 patients with the new drug developed AIDS, as did 15 patients in the other group.

$\stackrel{\square}{4}$				
-What type of study is this?				
Interventional study, possibly randomised controlled trial				
-What was the measure of disease in this study?				
Incidence of AIDS i.e. new cases of AIDS.				
-What was the measure of exposure in this study?				
A new drug				
-What measures of the association between exposure and disease could be calculated in this study?				
Risk ratio (RR), or absolute risk difference (ARD), or number needed to				
treat (NNT) or harm (NNH)		$\begin{gathered} \text { Disease } \\ \text { Yes (cases) } \end{gathered}$	$\begin{array}{r} \text { Disease } \\ \text { No (controls) } \end{array}$	Total
	Exposure Yes	20	60	80
	Exposure №	15	65	${ }_{80}$
	\|Tถล	35	125	160
$R R=(20 / 80) /(15 / 80)=1.33$ (new treatment more harmful than the old one)				
$A R D=(20 / 80)-(15 / 80)=0.25-0.19=0.06=6 \%$. Since this is an increased risk, we are looking at NNH not NNT				
$N N H=1 / 0.06=17$. In other words, it is predicted that there will be 1 new				

c) 650 subjects underwent ultrasound examination for gall stone disease; at the same time, they completed a questionnaire and anthropometric measurement (weight, height, waist and hip circumference). Obese subjects, those with BMI over 29, had 3.4 times more often gall stone disease than those with BMI less than 25.

| d) 17,000 men and women underwent an examination and |
| :--- | :--- |
| completed a questionnaire. On the basis of the questionnaire, |
| the subjects' jobs were classified as high stress (5000 subjects) |
| and low stress (12000). Over the next 7 years, 50 persons in |
| high stress jobs and 120 persons in low stress jobs developed a |
| heart attack. |

$\pm 1 \mathrm{Cl}$			
-What type of study is this?			
Cohort study			
-What was the measure of disease in this study?			
-What was the measure of exposure in this study?			
Self-reported stress at baseline, classified as high or low stress			
-What measure of the association between exposure and disease could be calculated in this study?			
Risk ratio	${ }^{\text {Dise }}$	No	
Exposure Yes	50		5000
Exposure No	${ }^{120}$		12000
-10at			¢\%000
$R R=[50 / 5000] /[120 / 120$	$=0$.	$01=$	effect)

Summarization II.	

Rates	
- What can you name and define?	

| Exercise |
| :--- | :--- |
| -Risk exercise |
| -Ignaz Semmelweis |
| 15 mins |
| |

Exercise
1,000 of retired police workers was followed for 25 years. Half of
them were regular alcohol drinkers, and there were 20 cases of
liver cancer in this group. In the rest of the group, there was found
10 cases of the cancer.
i) \quad Build up the table and calculate absolute risk for each group
ii) \quad What is the relative risk/risk ratio among regular drinkers in
comparison with others?
iii)Calculate odds ratio for the same association. What do you think about results ii) and iii)?

					$\pm \square$
i)					
		Cancer	No cancer	Total	Rel. risk
	Regular drinkers	20	480	500	20/500=0.04
	Non regular/non drinkers	10	490	500	10/500=0.02
	Total	30	970	1000	

ii) What is the relative risk among regular drinkers in comparison with
others?
$R R=0.04 / 0.02=2.00$
Dates of study entry, diagnosis and end of follow up (dropout or death) would be needed to calculate person-years for the denominator
ii) Calculate odds ratio for the same association. What do you think about results ii) and iii) ?
$O R=\boldsymbol{a} \times \boldsymbol{d} / \boldsymbol{b} \times \boldsymbol{c}=20 \times 490 / 10 \times 480=9800 / 4800=2.04$
Results in b) and c) are very similar. We have very rare outcome in this calculation and therefore $O R$ and $R R$ are similar and we can say that $O R$ is good approximation of $R R$

ANC

Puerperal fever

Ignaz Semmelweis (1818-1865) began his medical career in 1844 in obstetrics and midwifery at the Vienna Genera Hospital (Allgemeines Krankenhaus). There were two obstetric divisions in the hospital: patients in the first division were examined by doctors and medical students, while midwives attended to the patients in the second division Semmelweis noticed that there were more maternal deaths in the first division than the second division

In this exercise you will follow Semmelweis' steps investigating the problem.

						\wedge
a. Calculate the total and year specific mortality rate for the 6 -year period (1841-6) in the first and second divisions (fill the empty cells in the table above).						
Year	First division			Second division		
	Births	Deaths	Mortality rate	Births	Deaths	Mortality rate
1841	3036	237	0.08	2442	86	0.04
1842	3287	518	0.16	2659	202	0.08
1843	3060	274	0.09	2739	169	0.06
1844	3157	260	0.08	2956	68	0.02
1845	3492	241	0.07	3241	66	0.02
1846	4010	459	0.11	3754	105	0.03
TOTAL	20042	1989	0.1	17791	696	0.04
b. Do you agree with Semmelweis' claim that there were more deaths in the first division?						
c. Is it necessary to calculate the mortality rates for each year in order to compare the two divisions?						

Year	Births	Deaths	Mortality rate
Jan-April 1846	1193	194	0.16
May-Aug 1846	1039	140	0.13
Sep- Dec 1846	1120	125	0.11
Jan-Apr 1847	1240	84	0.07
TOTAL	4592	543	0.118
		ENTION	
May-Aug 1847	1076	50	0.05
Sep-Dec 1847	1059	42	0.04
Jan-Apr 1848	1155	14	0.01
May-Aug 1848	1107	7	0.006
TOTAL	4397	113	0.0257
e) Was Semmelweis' intervention successful?			
f) Briefly comment on the importance and implications of this finding in terms of epidemiology and clinical practice.			

IIM

We have study, we have basic results from analysis...
.....we must know how to interpret findings

IIC

Three major issues in interpretation of any epidemiological study

- Chance (random variation) - statistics
- Bias (i.e. systematic error)
- Confounding
- Only if all of these have been excluded, you may start thinking of a causal association

Confounding
- Situation when a third factor is associated with
both exposure and disease
- Association between "exposure" and disease may
not be causal; instead, it is due to a third factor
which is associated with both exposure and
disease.

Most common confounders:

- Gender (men have higher mortality and more risk factors; women higher morbidity)
- Age (risk of most diseases increases with age)
- Socioeconomic status (risk of most diseases higher in lower SE groups)
- Ethnic group
- Smoking
- Alcohol
- etc...

Control of confounding	
Design	Analysis (if data collected)
- Randomisation	- Stratification
- Restriction	- Regression modelling
- Matching	

Effect modification (interaction)
- the effect of exposure on disease is dependent on
the level of a third factor
or
- a moderator specifies on whom or under what
conditions another variable (exposure) will
operate to produce the disease.

	Finding out the different influence in different
strata	
=exploring association between exposure	
(independent variable) and outcome (dependent	
variable) within different strata of the 3	
characteristic	
age groups	
sex	
achieved education level	
geographical area	

| Example from yesterday |
| :--- | :--- |
| Death rates from CHD in smokers and non-smokers |
| by age |

Age Smokers rate Non-smokers rate $35-44$ 0.61 0.11 $45-54$ 2.40 1.12 $55-64$ 7.20 4.90 $65-74$ 14.69 10.83 $75-84$ 19.18 21.20 $85+$ 35.93 32.66 ALL AGES 4.29 3.30			
The rate ratio It may suggest t decreases with increasing age. is higher in younger ages.			

				今\\|C1
EXAMPLE CHD, smoking and age in British doctors study (rates per 100,000) =Framingham study				
	Non-smokers		Heavy smokers	
	Rate	RR	Rate	RR
<45	7	1.0	104	14.9
45-54	118	1.0	393	3.3
55-64	531	1.0	1025	1.9

[^0]
ث101

Identification of effect modification

- Stratified analysis
- Compare effect estimates in strata
- Assess differences in effects by significance tests (p-value for heterogeneity)
- Pooled estimates (e.g. standardised) not appropriate when there is an interaction
- Please note that genuine \& meaningful interactions are rare

+1/CI

Example:
Height and IQ - real association or not?
Height \longrightarrow IQ

Found: High negative association between height and IQ

Height and IQ

If after adjustment for Sex there is
NO association between height and IQ,
then Sex was a confounder

Height and IQ

If there is no association between Sex and IQ, then
Sex cannot be a confounder
Likewise, if there is no association between Sex and height, then Sex
cannot be a confounder
The confounder must be related to both Exposure
and Outcome

Somen are

- Chance - random error
- Bias - systematic error
- Confounding - third factor explaining an association

Three main categories of alternative explanation
 +JCI

ثJCI

Validity

- A study's results and conclusions are valid when they reflect the true relationship in the study population
- To assess the validity of findings we need to consider alternative explanations for the observed associations

Bias

- is a systematic error in the design of an epidemiological study which leads to a distortion or error in the study results
- an association will allow to be distorted if error is differential

Bias can affect	
- Estimate of one variable	
- Estimate of association between variables	

a)

- Non-differential vs. differential
- error in one variable not related to / dependent on the value of other variables
- error in one variable is related to value of other variable

tIMI

Example: sex differences in HDL-cholesterol
non-differential - badly calibrated measurement of HDL-cholesterol does not bias estimate of mean sex difference (the error cancels out)
differential - measurement of HDL-cholesterol in different single sex studies using different labs: biases estimate of mean sex difference - unless labs carefully calibrated against an external standard.
E.g. cases and controls analysed in different labs!

Errors (biases) may be
b)

- Selective vs. informative
- Related to selecting subjects into study
- Related to collecting information

Selection bias

- due to errors in the way sample is recruited
- a distortion that results from procedures used to select subjects or their participation
- resulting in a difference in the characteristics between those who are included in the study and those in study population but not included in the study sample
- The study sample
- representative or random sample better than volunteers
- high response rate (>70\%)
- Follow-up participation in longitudinal study
- Item non-response

If non-response is related to the exposure and/or outcome, then the study may produce invalid findings

Particular concern in case-control studies because exposure and disease are both present at time of recruitment

Hospital-based studies are problematic because cases are filtered: not all cases go to hospital, not all cases get the correct diagnosis
e.g. a hospital-based study of depression will involve severe cases only
e.g. sick smokers may refuse to participate more often than healthy smokers

Particular concern in case-control studies because	
exposure and disease are both present at	
time of recruitment	
Hospital-based studies are problematic because	
cases are filtered: not all cases go to hospital,	
not all cases get the correct diagnosis	
e.g. a hospital-based study of depression will	
involve severe cases only	

Information bias
- due to errors in way in which information collected
from the sample

- errors in the way information about exposure or
disease collected

$=>\frac{\text { misclassification - putting subjects in wrong }}{\text { category }}$| inaccurate estimates of occurrence of effect size, |
| :--- |
| or even direction of association |

e.g., exposed as unexposed, case as control

Important types of information bias include

- Reporting/recall bias: by study participants
- Observer bias: in measurements by research personnel
- Diagnostic bias: probability of detection or correct identification of disease across study groups or over time

188

ثJCI

Aroused misclassification may be

- Random - above / below
- Systematic - all in one direction
- Non-differential (error in one variable not related to / dependent on the value of other variables)
- Differential (error in one variable is related to value of other variable

Underestimated effect traditionally seen as less of problem than overestimate

Differential misclassification	
- Can distort associations, and can produce	
spurious associations	

i) Reporting bias
- May underestimate some behaviours eg alcohol,
smoking
- In CS or CC studies when exposure \& disease
assessed at same time - bigger problem
- eg depression and poor physical health
- Often not conscious - placebo effect

| iii) Observer bias |
| :--- | :--- |
| - investigator classifies exposure differently in |
| cases / control |
| or |
| - the investigator diagnoses disease differently in |
| exposed / unexposed participants |
| => the results are distorted |

- Interviewer may probe cases more closely for
- May look for endpoint more carefully in those
iii) Observer bias
- investigator classifies exposure differently in cases / control
- the investigator diagnoses disease differently in exposed / unexposed participants
=> the results are distorted
iv) Interviewer bias exposure exposed to disease
=> Study must be blinded
v) Detection bias
- Differences may occur in accessing medical care
- Differences in diagnostic criteria
- These differences may be associated with exposure eg social class / country
- Hence detail paid to ascertainment and validation of endpoints

tJCI
 What can we do to prevent / reduce bias?

Selection bias

- random sampling from study population
- strategies to reduce non -response eg repeat mailings, offering different times at clinic
- proper choice of control group in case-control studies

IUCI

Recall / reporting bias

- recall bias : try to obtain objective information on past exposures wherever possible or use proxy informants
- reporting bias - include lots of different questions so that subjects are hypothesis blind
- trials should be controlled and blinded

Observer bias

- investigators blind to case / exposure status wherever possible
- use standardised instruments and protocols, back translations
- ideally use centralised measurement or calibrate instrument
- periodic check on staff to check for differences in procedures

-JCI

Assessment of bias

- Non-responders questionnaire
- Baseline characteristics of those lost to follow can be analysed and compared to those remaining in study
- Objective validation of self-reported information
- Sensitivity analyses to estimate effect of bias

Detection / diagnostic bias

- aim for population - based ascertainment of cases
- follow 'Standardised diagnostic criteria'

Bias: the silent menace

- Cannot be assessed numerically
- No software to identify bias
- If there is flaw in the design of the study increasing numbers will not get rid of it !
- Can only be assessed by careful evaluation of the design

Publication bias
High-impact journals prefer clear, positive results! : $:$
Bias in systematic reviews
Form of selection bias arising if null studies are not published
If not included the overall estimate is biased upwards.
Minimised by searching grey literature, trial registers and
conference proceedings to include null/negative results
e.g. the 'drug effectiveness cycle' (β-blocker-mortality example), selective serotonin reuptake inhibitors in treating depression
203

Publication bias
Failure to publish
• a negative or inconclusive trial result
- a small trial may be abandoned
Duplicate publication
• a large treatment effect
• need for research output
E.g. nine trials of ondansetron (antiemetic) in 23 (!) publications
(Tramer et al BMJ 1997)
204

How to avoid publication bias
Ho make sure studies are not double counted

- To search for unpublished studies (e.g. contact researchers
directly)
- To use non-English language publications
- \quad Statistical checking (funnel plots: smaller studies report more
extreme results)
- Registration of studies and to make sure all results are in public
domain (not yet fully achieved)
- Trial registration: assigns unique trial identification numbers, and to
record other basic information about the trial so that essential
details are made publicly available
- From 2004 International Committee of Medical Journal Editors
(ICMJE) would consider trials for publication only if they had been
registered before the enrolment of the first participant.
205

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Funnel plot: |
| asymmetrical plot in the presence of bias: some smaller studies |
| (open circles) are of lower methodological quality and therefore |
| produce exaggerated effect estimates |

| Funnel plot: |
| :--- | :--- | :--- |
| asymmetrical plot in the presence of bias: some smaller studies |
| (open circles) are of lower methodological quality and therefore |
| produce exaggerated effect estimates |

Conclusions:

- All studies are imperfect
- Most studies are subject to measurement error and various biases
- The question is: are the results valid enough for my purpose?

Causality
1/ we find an association between exposure and
outcome
2/ we need to ask whether the association is causal
= does the exposure cause the outcome?

| What is a cause? |
| :--- | :--- |
| Rothman (1986):
 An event, condition, or characteristic that plays an essential
 role in producing an occurrence of the disease. Source -
 Modern Epidemiology.
 - Something that has an effect
 - Alters disease frequency or health status
 |

Association versus Causation
- Epidemiological research aims to discover aetiology of
disease
- Epidemiology is the study of the association between a
potential cause (risk factor/determinant) and a specific
disease (outcome).
- Presence of a valid statistical association does not imply
causality
- Association is not the same as causation
- Goes beyond association
- How do we decide whether a given association is causal or
not?

Guidelines for inferring causation	
- The Bradford-Hill criteria of causation	
(J Royal Soc Med 1965; 58: 295-300)	

| Specificity of association |
| :--- | :--- |
| - Occurs when a single factor is associated with a |
| single outcome |
| - Increasingly irrelevant to current models of disease |
| causation (single factor many outcomes) |
| Example |
| - asbestos and mesothelioma - shown |
| - HIV and AIDS - shown |
| - Low lead exposure and IQ - not clear. IQ is not a definable |
| brain condition so there is the potential for confounding |
| e.g. SES |

Temporal sequence of association

- The exposure must precede outcome
- Optimal study designs = randomised intervention study or prospective cohort study
- Weak designs for temporality: cross-sectional, casecontrol study
- Reverse causality may be problem in cohort or casecontrol study

Plausibility of association
- Practically we may accept a possible causal
association even when there is no plausible
mechanism or explanation
- Acceptance depends on how "unlikely association is"
- Reported association may stimulate search for
mechanism
Example
- Cigarettes \& lung cancer. Carcinogenic substances in
cigarettes
- Low fibre diet \& colon cancer. Dietary fibre increases
intestinal motility and dilutes/absorbs fecal carcinogens

Coherence of association
- Reported association does not conflict with current
knowledge
- Can lead to publication bias
- Can discourage search for alternative associations
Example
- Serum cholesterol lowering effect on heart attack,
regardless of the means - diet or drug

Experiment (reversibility)
- Removal of exposure leads to a reduction in the risk
of the outcome
- Currently perceived as the strongest type of evidence
- May be difficult to ascertain in diseases with long lag
times between exposure and disease

Analogy	
- Other similar demonstrated associations	
- In practice may be limited by current knowledge	

Bradford Hill Closing Remarks (1965)

"I do not believe ... that we can usefully lay down some hard-and-fast rules of evidence that must be observed before we accept cause and effect.

None ... can bring indisputable evidence for or against the cause and-effect hypothesis and none can be required ..

What they can do, with greater or less strength, is to help us to make up our minds on the fundamental question - is there any other way of explaining the set of facts before us, is there any other answer equally, or more, likely than cause and effect?"

ث10.

Causal Inference

- Not just ticking boxes
- Weigh evidence of causal association against other explanations
- Understanding, judgement \& interpretation are crucial
- Cannot prove a causal association
- Can only be inferred based on evidence
- May change in the light of new evidence

Reverse causality is a type of confounding in the sense that it is 'real' and not an artefact of study design. It is relevant in some situations but not others

Example of potential reverse causality
Researchers are interested in the link between
blood levels of inflammatory markers and later CVD
There are 4 possible explanations
1. Inflammation \rightarrow atherosclerosis (causal association)
2. Atherosclerosis \rightarrow inflammation (reverse causal association)
3. Inflammation $\leftarrow \rightarrow$ atherosclerosis (association is bi-
directional)
4. Other processes lead both to atherosclerosis and
inflammation (confounding) e.g. diet

| Public health policy |
| :--- | :--- |
| - Ideally based on 'evidence' - meta-analyses and |
| systematic reviews |
| - Considerations of efficiency, cost-effectiveness and |
| harm |
| - Eradication of poverty for improving health? |
| - Reduction in social inequality for reducing health |
| inequality? |

Causation and public health
- There is moment when action may be taken - it may
vary from introduction of a new drug to advice to
public on certain practice, or new legislation being
introduced
- Complex process taking into account costs, benefits
and harms
- Even when evidence become overwhelming,
governments may be slow to act

[^0]: Positive and negative effect modification

 - Positive:
 - "susceptibility factor" or "vulnerability factor",
 - its presence (or higher values) strengthens the association between exposure and disease.
 - Negative:
 - "resiliency factor" or "buffering factor"
 - its presence (or higher values) weakens the association between exposure and disease

